

Study Questions - Topic 21

1. At a tower you measure the following average air temperatures: $\bar{T}_1 = 15^\circ\text{C}$ and $\bar{T}_2 = 10^\circ\text{C}$, at heights $z_1 = 1\text{ m}$ and $z_2 = 11\text{ m}$. Calculate $\Delta\bar{T}/\Delta z$ and $\Delta\bar{\theta}/\Delta z$.
2. Redo the calculation for air temperatures $\bar{T}_1 = 10.0^\circ\text{C}$ and $\bar{T}_2 = 11.0^\circ\text{C}$, at heights $z_1 = 1\text{ m}$ and $z_2 = 6\text{ m}$.
3. For question 1 and 2 calculate Q_H using the K-Theory. Given is the eddy diffusivity $K_H = 0.2\text{ m}^2\text{ s}^{-1}$. Use appropriate values from Tables in Oke, T. R. 'Boundary Layer Climates'.
4. At the tower you measure a carbon dioxide concentration of $\bar{\rho}_{c1} = 14\text{ mmol m}^{-3}$ and $\bar{\rho}_{c2} = 15\text{ mmol m}^{-3}$, at heights $z_1 = 1\text{ m}$ and $z_2 = 11\text{ m}$. Calculate $\Delta\bar{\rho}_c/\Delta z$ and the mass flux density of carbon dioxide using the K-Theory and the Reynolds analogy.
5. At the tower you measure also measure absolute humidity of $\bar{\rho}_{v1} = 5\text{ g m}^{-3}$ and $\bar{\rho}_{v2} = 4\text{ g m}^{-3}$, at the same heights $z_1 = 1\text{ m}$ and $z_2 = 11\text{ m}$. Calculate $\Delta\bar{\rho}_v/\Delta z$ and the mass flux density of water vapour E (in $\text{g m}^{-2}\text{ s}^{-1}$) using the K-Theory and Reynolds analogy.
6. Calculate Q_E from question 5.