

McGill University, Montreal
GEOG 321 - Climatic Environments
Knox
January 2, 2024

Study Questions - Topic 10

1. The specific heat of water is $c_p = 4.18 \text{ kJ kg}^{-1} \text{ K}^{-1}$. Calculate the heat capacity C of water.
2. Calculate the heat capacity C of a dry mineral soil with a porosity of 55%. Use values from the table in Lecture 10, Slide 8.
3. Calculate the heat capacity C for the same soil if it is completely saturated.
4. Calculate the heat capacity C of a partly saturated soil with $P = 50\%$, $\theta_a = 0.30$ and an organic to mineral ratio of 1.5. Again, use the table in Lecture 10, Slide 8.
5. If you increase the soil volumetric water content θ_w of any soil by 0.1, how does the heat capacity C of the soil change?
6. Assume we have a soil with $C = 2 \text{ MJ m}^{-3} \text{ K}^{-1}$ and we measure a soil heat flux density Q_G of $+100 \text{ W m}^{-2}$ all going to the first 10 cm of the soil, how fast would the layer 0-10 cm heat up?
7. Write Fourier's law and explain it briefly.
8. In a dry and uniform mineral soil with a porosity of 55%, we measure soil temperatures T_1 at 2 cm and T_2 at 6 cm. $T_1 = 20^\circ\text{C}$, $T_2 = 18.5^\circ\text{C}$. Calculate the soil heat flux density Q_G assuming a thermal conductivity of $k = 0.27 \text{ W m}^{-1} \text{ K}^{-1}$.
9. At 5 cm depth we measure a soil heat flux density $Q_G = 20 \text{ W m}^{-2}$ and simultaneously a temperature gradient of -0.5 K cm^{-1} . Calculate the thermal conductivity k .
10. For a soil with a specific heat $c_p = 1.8 \text{ kJ kg}^{-1} \text{ K}^{-1}$, a density $\rho = 1.4 \text{ Mg m}^{-3}$, and a thermal conductivity $k = 0.4 \text{ W m}^{-1} \text{ K}^{-1}$, calculate the thermal diffusivity κ .

11. Calculate the thermal admittance μ for the same soil.
12. Assume we know a soil's dry mass fraction of organic material ($f_o = 25\%$), and its bulk density ($\rho_s = 1.4 \text{ Mg m}^{-3}$). What is the mass of organic (M_o) and mineral material (M_m) contained in one cubic metre of this soil?
13. Using the values of specific heat for organic (c_o) and mineral (c_m) given in the table of Lecture 10, slide 8, calculate the composite heat capacity (C_s) for the dry soil in Question 12.