

Answers to Study Questions - Topic 23

1. The production rate of mechanical turbulence is described as:

$$-\overline{u'w'} \frac{\Delta \bar{u}}{\Delta z}$$

Both u' and w' have units of m s^{-1} , so their (average) product $\overline{u'w'}$ has the unit of $\text{m}^2 \text{s}^{-2}$.

$\Delta \bar{u}$ has units of m s^{-1} and Δz is given in m. So the wind gradient $\Delta \bar{u}/\Delta z$ has units of $\text{m s}^{-1} \text{m}^{-1} = \text{s}^{-1}$.

The combined mechanical production term then must have units of $\text{m}^2 \text{s}^{-2} \text{s}^{-1} = \underline{\text{m}^2 \text{s}^{-3}}$.

The production rate of thermal turbulence is described as:

$$\frac{g}{\bar{T}} \overline{w'T'}$$

g is the acceleration due to gravity and describes the velocity increase per time with the units of $(\text{m s}^{-1}) \text{s}^{-1} = \text{m s}^{-2}$. \bar{T} is the absolute temperature in K. So the term g/\bar{T} has the units $\text{m s}^{-2} \text{K}^{-1}$.

w' has units of m s^{-1} , and T' has units of K, so their (average) product $\overline{w'T'}$ has the unit of $\text{m s}^{-1} \text{K}$.

The combined thermal production term then must have units of $\text{m s}^{-2} \text{K}^{-1} \text{m s}^{-1} \text{K} = \underline{\text{m}^2 \text{s}^{-3}}$ as the Kelvins cancel out.

2. TKE is an energy in Joules (J). The SI unit J can be also written as (see e.g. <https://en.wikipedia.org/wiki/Joule>)

$$J = \text{kg m}^2 \text{s}^{-2}$$

We usually express TKE per unit mass (i.e. kg^{-1} , see Lecture 19), so the units of TKE per unit mass would be $\text{kg m}^2 \text{s}^{-2} \text{kg}^{-1} = \text{m}^2 \text{s}^{-2}$.

The amount of TKE per unit mass produced per time (s^{-1} , production rate) is then $\text{m}^2 \text{s}^{-2} \text{s}^{-1}$ hence $\underline{\text{m}^2 \text{s}^{-3}}$, the same as the above terms. So both terms describe the rate of TKE per unit mass and per unit time produced.

3. The mechanical production rate is:

$$-\overline{u'w'} \frac{\Delta \bar{u}}{\Delta z} = -0.52 \text{ m}^2 \text{ s}^{-2} \times 0.07 \text{ s}^{-1} = \underline{0.0364 \text{ m}^2 \text{ s}^{-3}}$$

The thermal production rate is:

$$\frac{g}{\overline{T}} \overline{w' T'} = \frac{9.81 \text{ m s}^{-2}}{304.1 \text{ K}} \times 0.30 \text{ K m s}^{-1} = \underline{0.0097 \text{ m}^2 \text{ s}^{-3}}$$

The total production rate is the sum of thermal and mechanical production rates:

$$0.0364 \text{ m}^2 \text{ s}^{-3} + 0.0097 \text{ m}^2 \text{ s}^{-3} = \underline{0.0461 \text{ m}^2 \text{ s}^{-3}}$$

4. The Richardson flux number (Rf) is the ratio of thermal to (minus) mechanical production rate, hence inserting values from Question 3:

$$Rf = \frac{\frac{g}{\overline{T}} \overline{w' T'}}{\overline{u'w'} \frac{\Delta \bar{u}}{\Delta z}} = \frac{0.0097 \text{ m}^2 \text{ s}^{-3}}{-0.0364 \text{ m}^2 \text{ s}^{-3}} = \underline{-0.2665}$$

Note that Rf is a dimensionless number and has no units.

5. The result fulfills $-1/3 < -0.2665 < 1/3$, hence falls into the turbulence regime of 'forced convection'. It is a dynamically slightly unstable situation (i.e. $Rf < 0$).
6. The height in the surface layer at where the mechanical production rate and the thermal production rate are equal is equal to (minus) the Obukhov length L . The Obukhov length L is defined as:

$$L = -\frac{\overline{T} u_*^3}{k g \overline{w' T'}}$$

Here, k is the von Karman constant (0.41), also g is a constant. We have $\overline{w' T'}$ and \overline{T} , but we first need to calculate u_* , the friction velocity in m s^{-1} :

$$u_* = \sqrt{-\overline{u'w'}} = \sqrt{-0.52 \text{ m}^2 \text{ s}^{-2}} = 0.721 \text{ m s}^{-1}$$

Enter into the equation for the Obukhov length L :

$$L = -\frac{\overline{T} u_*^3}{k g \overline{w' T'}} = -\frac{304.1 \text{ K} \times (0.721 \text{ m s}^{-1})^3}{0.41 \times 9.81 \text{ m s}^{-2} \times 0.30 \text{ K m s}^{-1}} = -94.5034 \text{ m}$$

So at a height of minus L , i.e. at 94 m, thermal and mechanical production rates are expected to be equal.

7. The stability parameter ζ is defined as

$$\zeta = \frac{z}{L} = \frac{10\text{m}}{-94.50\text{ m}} = \underline{-0.106}$$

8. A dynamic stability of $\zeta < 0$ is dynamically slightly unstable. This matches the $Rf < 0$ situation found above.